2型糖尿病

疾病
(重定向自第二型糖尿病

2型糖尿病(Type 2 diabetes 或 Type 2 diabetes mellitus,简称 T2DT2DM,或称第2型糖尿病[注 1],旧称非胰岛素依赖型糖尿病(英语:noninsulin-dependent diabetes mellitus,NIDDM)或成人发病型糖尿病(英语:adult-onset diabetes),是一种慢性代谢疾病,患者特征为高血糖、相对缺乏胰岛素、有胰岛素抗性[6]。常见症状有烦渴频尿、不明原因的体重减轻[3] ,可能还包括多食、疲倦、或有治不好的酸痛[3],以上症状通常会慢慢出现[6]。高血糖带来的长期并发症包括心脏病中风糖尿病视网膜病变,这可能导致失明肾脏衰竭、甚至四肢血流不顺而需要截肢[1] ;2型糖尿病患者可能突然发生高渗性高血糖状态,但却不太会并发糖尿病酮症酸中毒[4][5]

2型糖尿病
又称非胰岛素依赖型糖尿病(Noninsulin-dependent diabetes mellitus,NIDDM)
成人糖尿病(adult-onset diabetes)[1]
空心蓝圈为糖尿病的国际象征符号[2]
读音
症状烦渴多尿症、不明原因体重下降多食症[3]
并发症高渗性高血糖状态糖尿病酮症酸中毒心血管疾病中风糖尿病视网膜病变肾功能衰竭截肢[1][4][5]
起病年龄中年或老年[6]
病程终身[6]
类型糖尿病荷尔蒙失调
病因肥胖症、缺乏运动、遗传[1][6]
诊断方法血糖测量[3]
预防维持正常体重、体能锻炼、均衡饮食[1]
治疗饮食调整英语diabetic diet二甲双胍、胰岛素、代谢手术[1][7][8][9]
预后预期寿命缩短约10年[10]
患病率3.92亿(2015年)[11]
分类和外部资源
医学专科内分泌学
ICD-115A11
ICD-10E11
OMIM125853、​601283、​601407、​603694、​608036
DiseasesDB3661
MedlinePlus000313
eMedicine117853
Orphanet181376、​181376
[编辑此条目的维基数据]

2型糖尿病主要发生在肥胖而又缺乏运动的人[1],具有先天基因遗传者风险也较高[6]。2型糖尿病占了糖尿病患者约九成的病例,另外一成为1型糖尿病妊娠糖尿病患者[1]。1型糖尿病患者因胰脏β细胞自身免疫破坏,而有绝对性胰岛素缺乏的问题[12][13]。糖尿病确诊需经由血液检查而定,如检测空腹血糖值英语fasting plasma glucose口服葡萄糖耐量试验(OGTT)或检测糖化血红蛋白(HbA1c[3]

部分的2型糖尿病可经由保持正常体重、规律运动及适当饮食来预防[1],治疗方式有运动和改变饮食英语Diabetic diet[1]。如果没有经常性血糖偏低,建议的治疗药物选择包含:双胍类[7][14]磺酰脲类(sulfonylureas)、噻唑烷二酮类(thiazolidinedione)、GLP-1类似物DPP-4抑制剂SGLT2抑制剂及复方药物、胰岛素,但许多患者最终都必须使用胰岛素治疗[9]。使用胰岛素的患者必须定期测量血糖,口服降血糖药的患者则不一定需要[15]。对肥胖的患者而言,接受减肥手术对改善糖尿病亦十分有效[8][16]

自1960年起,2型糖尿病病例就随着肥胖率逐渐升高[17]。1985年时全球仅有约3000万人罹患糖尿病,到了2015年患者增至3.92亿人[11][18]。糖尿病好发于中高龄层[6],但现今青年人罹患2型糖尿病的比率逐渐增加[19][20]。2型糖尿病患者可能减损长达约十年的寿命[10]。糖尿病是最早被描述的疾病之一[21],1920年代科学家就发现了胰岛素对它的重要性[22]

台湾健保数据库10年追踪研究发现,65岁以上新确诊糖尿病病人,于男性族群之死亡相对风险为非糖尿病患者的1.2倍;于女性族群则为1.27倍。糖尿病患者中,10 年内发生心血管并发症相对风险也高于非糖尿病患者 (8.9%vs.5.8%),而男性和女性的相对风险分别为1.54及1.70。[23]

糖尿病讲解影片(英文)

病征与症状

编辑
 
糖尿病显著症状概述

糖尿病的典型症状为多尿症烦渴多食症Polyphagia)以及体重减轻[24]。诊断时其他常见的症状包括视野模糊皮肤瘙痒周围神经病变、反复阴道炎疲劳等病史[13]。然而,很多人在最初数年间不会出现病征,一般在常规体检中才被诊断出来[13]。在少部分的患者会出现高渗性高血糖状态,此类患者会产生高血糖伴有意识水平下降英语decreased level of consciousness,以及低血压的病况[13]

并发症

编辑

2型糖尿病是慢性疾病,患者的预期寿命可减少长达10年[10]。导致预期寿命减少的部分原因是相关的并发症,包括:患上心血管疾病的风险是健康人群的二至四倍,其中包括缺血性心脏病中风等等。下肢截肢率会增加20倍,住院率亦相对增高[10]。在发达国家及越来越多的其他地区里,2型糖尿病是导致非创伤性失明肾衰竭的首要原因[25]。在发病过程中,患者罹患认知功能障碍英语cognitive dysfunction痴呆风险也会增高,如阿兹海默病血管性痴呆等等[26]。其他并发症还包括黑棘皮症性功能障碍,以及容易发生感染[24]

糖尿病患相较于正常族群会增加2到4倍的心血管疾病风险,约32%的糖友合并有心血管疾病[27],而心血管疾病是全世界糖尿病患者最重要的并发症及主要死因,近6成的糖尿病患者死于心血管疾病。[28]

研究显示,糖化血色素(HbA1c)每增加1%会增加16%心衰竭发生率[29],近15%的糖友合并有心衰竭[27],增加60-80%心血管死亡风险。[30][31]男性心衰竭比例高2.5倍,女性心衰竭比例高4.1倍[32],30%-50%心衰竭患者有糖尿病[33],五年存活率仅剩12.5%。另外,约10%的2型糖尿病患会发生肾病变(约20万人),40%末期肾脏疾病原因来自于糖尿病。[34]

糖尿病血管并发症可分为小血管并发症(Microvascular disease)及大血管并发症(Macrovascular disease)且随着并发症逐渐加重常会导致患的器官、身体功能的丧失。[35]

小血管病变包括视网膜病变、神经病变与肾病变等等,由糖尿病引起的小血管疾病;大血管病变则包括冠状动脉心脏病(冠心症)、中风、周边血管疾病等,糖尿病病患因为常合并患有高血压、血脂异常及代谢综合征,这些因素也会促进冠状动脉粥状硬化的产生[36]

2型糖尿病人的血脂异常特征为,三酸甘油脂酯增高、高密度脂蛋白胆固醇下降,低密度脂蛋白胆固醇略上升。[37]高密度脂蛋白胆固醇下降,会增加糖尿病老年患者的心血管疾病及缺血性中风风险。[38]

另外,高血压是在糖尿病很常见的共病症,相较于非糖尿病患者族群,糖尿病族群的高血压发生率可高出1.5–3 倍之多。[39]约有 6–8 成的糖尿病患者死于心血管并发症,而这些心血管并发症的发生有高达 75% 可以归咎于高血压所造成。[40]除了心血管并发症,与高血压相关的糖尿病并发症还包括了肾脏病变、视网膜病变、中风等。[37]

病因

编辑

2型糖尿病的发生与患者的生活方式与遗传因素有关[25][41]。有些因素如饮食习惯和肥胖症等是人为可控制的,但其他如年纪增长、性别为女性、遗传等因素则不然[10]。睡眠不足也与2型糖尿病有关[42],因为睡眠不足会使致身体的新陈代谢有所改变,进而诱发2型糖尿病[42]。孕妇在胎儿发育过程中的营养状况对胎儿未来罹患糖尿病的几率也占有一席之地,其中DNA甲基化改变是造成此种影响的可能机制之一[43]。此外,肠道细菌如肠道普氏菌Prevotella copri)和普通拟杆菌Bacteroides vulgatus)也可能和2型糖尿病有关[44]

生活方式

编辑

目前认为有不少生活方式都是引致2型糖尿病的重要因素,其中包括肥胖症超重BMI高于25)、身体活动量不足、不健康的饮食、压力过大以及城市化的生活等[10]。30%的华裔与日裔患者体脂过高,欧裔和非裔患者则有60%至80%,印第安人和太平洋岛民患者则100%都体脂过高[13]。至于非肥胖症的2型糖尿病患则常有过高的腰臀比[13]。吸烟似乎也会增加罹患2型糖尿病的机会[45]

饮食也是影响2型糖尿病发病风险的重要因素。饮用过量的含饮料可增加患病风险[46][47]。饮食里摄取的脂肪也是很重要的因素,饱和脂肪反式脂肪均会增加患病风险,而多元不饱和脂肪单元不饱和脂肪则有助于降低风险[41]。摄取大量白米似乎也会使致病风险增加[48]。也有学者相信,7%的病例可能是缺乏运动所致[49]持久性有机污染物可能也和糖尿病相关[50]

遗传因素

编辑

大多数糖尿病个案涉及多种基因,而这些不同的基因都可能会使患上2型糖尿病的几率上升[10]。如果同卵双胞胎的其中一人有糖尿病,另一人患上糖尿病的机会高于90%,然而非同卵的兄弟姐妹的几率只有25%至50%[13]。到2011年为止,共发现了超过36个基因都可能增加罹患2型糖尿病的风险[51]。然而,即使全部这些基因加在一起,亦只占诱发糖尿病的整体遗传因素中的10%[51]。举例来说,可使发病风险增加1.5倍的等位基因TCF7L2英语TCF7L2为常见基因变异中拥有最高风险的基因[13]。多数与糖尿病有关的基因都与β细胞英语beta cells功能有关[13]

在一部分罕见的糖尿病个案中,发病原因是因单个基因出现异常而引起的(称为单基因型糖尿病或“其他特殊类型糖尿病”)。[13][10]其中包括年轻人成人型糖尿病英语maturity onset diabetes of the young(简称MODY)、矮妖精貌综合征英语LeprechaunisRabson-Mendenhall综合征等等[10]。其中年轻人成人型糖尿病占年轻糖尿病患者个案总和的1%至5%[52]

健康状况

编辑

许多药物和健康问题都会使人较易患糖尿病[53]。这些药物包括:糖皮质激素噻嗪类利尿剂β受体阻滞剂非典型抗精神病药物[54]他汀类药物[55]。曾患妊娠糖尿病的人患上2型糖尿病的风险较高[24],而其他和2型糖尿病相关的健康问题还包括肢端肥大症皮质醇增多症甲状腺功能亢进症嗜铬细胞瘤及某些癌症胰高血糖素瘤英语glucagonoma[53]。另外,睾酮缺乏与2型糖尿病也有很密切的关联[56][57]

病理生理学

编辑

2型糖尿病的病因复杂,对于单一病患而言,难以确认引发疾病的原因,往往环境和遗传因素中的一种或者多种均有可能与发病相关[58]。胰岛β细胞功能失常和胰岛素抵抗引发了2型糖尿病[59]:尽管在1980年代,人们普遍认为仅靠胰岛素抵抗即可引发糖尿病,但后来的研究表明,在没有β细胞功能失常的情况下,糖尿病不可能发生[60]。在这两种症状的程度方面,患者表现出的胰岛素抵抗和相对胰岛素不足的程度有所差异:有些人以胰岛素抵抗为主、轻微的胰岛素分泌缺陷为次;而其他人可能只有轻微的胰岛素抵抗,而以胰岛素分泌不足为主[13]

在2型糖尿病中,胰岛素抵抗和高血浆胰岛素水平的发生往往先于疾病发生[58]:尽管过去曾认为高胰岛素水平是胰岛素抵抗引起的代偿,但后来的研究表明,血浆中的高胰岛素水平不一定是代偿胰岛素抵抗的后果,亦有可能是产生胰岛素抵抗的原因[61]。再者,在肥胖诱导的炎症等各种因素作用下,胰岛β细胞的生产或者分泌胰岛素的功能受损。[58]

其他可能与2型糖尿病和胰岛素抵抗、胰岛功能受损有关的重要机制还包括:脂肪细胞脂质的分解增加、对肠泌素英语incretin的抵抗或缺乏、血液中胰高血糖素水平过高、肾脏积蓄的盐份和水分上升,及中枢神经系统的代谢调节异常[10]

胰岛素抵抗

编辑

胰岛素抵抗被认为是2型糖尿病的主要特征之一[59]。在胰岛素抵抗的情况下,应当对胰岛素进行响应的组织或器官(如肌肉、肝脏及脂肪组织)无法对正常浓度的胰岛素作出适当响应[62]——例如:具体到肝脏而言,指的是肝脏无法正常响应胰岛素信号,致使糖原分解和葡萄糖异生不能被抑制,血糖被不当增加[63];具体到肌肉而言,指的是肌肉组织无法无法正常响应胰岛素信号,致使肌肉吸收的血糖减少,血糖下降变缓[64]。并不只有葡萄糖在这一过程受到影响:2型糖尿病患者的肝脏和肌肉常见异位脂肪沉积,其氧化过程和葡萄糖形成底物竞争,抑制了葡萄糖的氧化英语Randle cycle,亦被用来解释胰岛素抵抗的形成。此类的脂肪累积早于2型糖尿病的发病。[65]

欧洲胰岛素阻抗研究组织(EGIR)研究发现胰岛素敏感度会依年龄增加而下降,不过两者关联性会因身体质量指数(body mass index, BMI)校正而消失。[66]老化后胰岛素阻抗性的现象可能来自于腹部脂肪组织增生、骨骼肌肉量降低、生理活动减少、线粒体功能不全、荷尔蒙分泌减退、氧化压力和慢性发炎等。[67][68]

动物实验显示,单独的胰岛素抵抗并不一定引起糖尿病:消耗大量能量的大脑和肌肉之中存在的胰岛素抵抗并未在引起胰岛素抵抗,有鉴于此,肝脏和胰岛中的胰岛素抵抗可能是借由其它途径诱导。双基因敲除则提示胰岛素抵抗的多基因型,如IRS-1和GK双基因敲除可以诱导小鼠糖尿病,而单基因敲除不能。胰岛素抵抗往往会与高血压、高血脂等心血管风险因子聚集,形成所谓的“代谢综合征”。[58]

β细胞功能异常

编辑

然而,并非所有出现胰岛素抵抗的人士都会患上糖尿病,患者的胰岛β细胞需同时有胰岛素分泌障碍时才会发病[13]。胰岛β细胞功能失常是1型糖尿病和2型糖尿病的共同特征之一,但在2型糖尿病中,胰岛功能常常被忽视。2型糖尿病中的β细胞功能下降往往在糖类不耐受发生以前就已经发生[59]。确诊时,胰岛功能通常已经是正常水平的三成左右;英国前瞻性糖尿病研究中显示,胰岛的功能衰减无法透过饮食,磺脲类、二甲双胍或胰岛素治疗等单一治疗手段进行控制。目前用药选择中,DPP4i抑制剂、GLP-1类似物观察到针对2型糖尿病患者β细胞功能的改善[69]

1型糖尿病的胰岛素分泌不足主要是因为自体免疫引起的β细胞死亡,而2型糖尿病中的β细胞功能下降或者死亡的原因则较为复杂,与氧化应激、炎症等相关[59]。如以脂质毒性的角度而言,在肝脏和肌肉中异位累积的过量脂肪难以被有效氧化,透过非氧化途径生成反应性脂肪,诱导脂质的凋亡亦纠正脂肪过载的情形;在这一过程生成的神经酰胺等物质可介导胰腺细胞的衰亡[65]。由于饮食和遗传因素等原因,亚裔群体,特别是印度人,易于产生在器官内累积大量脂肪的腹部肥胖;尽管亚裔人群较西方群体纤瘦,也有较高的糖尿病流行率可能与之相关[70][71]。但这一过程不仅仅和脂质毒性有关,还和糖类引发的氧化应激有关[72]:过量的糖类与脂质在能量循环中会形成竞争,糖类的氧化往往受到抑制[73]

诊断

编辑
世界卫生组织糖尿病诊断标准[74][75]  编辑
条件 餐后两小时血糖 空腹血糖 HbA1c
mmol/l(mg/dl) mmol/l(mg/dl) %
正常 <7.8(<140) <6.1(<100) <5.7
空腹血糖障碍英语Impaired fasting glucose <7.8(<140) ≥6.1(≥100)& <7.0(<126) 5.7–6.4
糖耐量受损英语Impaired glucose tolerance ≥7.8(≥140) <7.0(<126) 5.7–6.4
糖尿病 ≥11.1(≥200) ≥7.0(≥126) ≥6.5

世界卫生组织定义糖尿病(包括1型和2型)为有症状之单次血糖值上升,或两次血糖值上升达到以下标准[76]

  • 空腹血糖≥7.0 mmol/l(126 mg/dl)
  • 作出糖耐力测试,口服两小时之后,血糖≥11.1 mmol/l(200 mg/dl)。

随机血糖高于11.1 mmol/l (200 mg/dl )且出现典型症状[24]糖化血红蛋白(HbA1c)高于6.5%是也一种诊断糖尿病的方法[10]。2009年,一个由美国糖尿病协会(American Diabetes Association,简称ADA)、国际糖尿病联合会(International Diabetes Federation,简称IDF)和欧洲糖尿病研究协会(European Association for the Study of Diabetes,简称EASD)之专家代表组成的国际专家委员会建议糖尿病诊断应使用48 mmol/mol作为临界值(相当于 HbA1c 6.5%)[77],美国糖尿病协会于2010年采用此建议[78]。只有病患出现典型症状和血糖>11.1  mmol/l(>200  mg/dl)才应该重复进行阳性检验[77]

糖尿病诊断之临界阈根据的是糖耐力测试、空腹血糖或HbA1c,和并发症(如视网膜病变)的关系[10]。比起糖耐力测试,空腹或随机血糖因为比较方便而被广泛使用[10]。HbA1c的优点是不需禁食且结果较稳定,但缺点是检验较血糖测量昂贵[79]。估计美国有20%的糖尿患者不知道自己患有糖尿病[10]

2型糖尿病的特征是在胰岛素抵抗胰岛素相对缺乏所造成的高血糖[80],这与1型糖尿病中的绝对胰岛素缺乏大不相同,后者是因为胰岛细胞损坏所导致的。而妊娠期糖尿病则是在怀孕时新发生的高血糖[13]。1型和2型糖尿病通常可以根据临床表现来区分[77]。如果对诊断存在疑问,抗体试验可能有助于判定1型糖尿病,C-胜肽英语C-peptide水平则有助于判定2型糖尿病[81]

台湾诊断标准

编辑

诊断标准包括以下4项,非怀孕状况下“只要符合其中1项”即可诊断为糖尿病(前三项需重复验证2次以上)[82]
(一) 糖化血色素(HbA1c)≧ 6.5%
(二) 空腹血浆血糖 ≧ 126 mg/dL
(三) 口服葡萄糖耐受试验第2小时血浆血糖 ≧ 200 mg/dL
(四) 典型的高血糖症状(多吃、多喝、多尿与体重减轻)且 随机血浆血糖 ≧ 200 mg/dL

中国大陆诊断标准

编辑
 

[83]

筛检

编辑

由于没有证据证明大规模糖尿病筛检英语Screening (medicine)可改善最终结果,因此没有大型组织或部门建议进行全面筛检[84][85]美国预防服务任务小组英语United States Preventive Services Task Force(USPSTF)建议对没有症状且血压高于 135/80 毫米水银柱的成年人进行筛检[86]。对于血压较低的人,并没有充分证据显示能够降低此群体的风险和死亡率[86][85]。USPSTF也建议40至70岁之间的过重者进行筛检[87]

世界卫生组织(WHO)和USPSTF皆建议高风险者进行筛检[84][88]。在美国,高风险者包含年龄超过45岁、一等亲英语first degree relative(包含手足)有糖尿病、部分族裔(如拉美裔、非裔,以及美洲原住民)、有妊娠糖尿病多囊卵巢综合征病史、过重,或是患有代谢综合征等等[24]美国糖尿病学会英语American Diabetes Association建议BMI超过25者进行筛检(亚裔则建议23以上就应该筛检)[89]。也建议,45 岁以上成人应每 1–3 年检查一次空腹血糖、HbA1C 或口服葡萄糖耐受试验。[90]卫生福利部国民健康署亦提供整合性筛检,筛检项目也包含糖尿病,40–64 岁的民众,建议每 3 年筛检一次;而针对 65 岁以上的民众,建议每年筛检一次。[91]

预防

编辑

适当营养和经常运动可以延缓或防止2型糖尿病的发病[92][93],严格执行生活方式控制可以降低超过一半的风险[25][94]。无论原始体重多寡或后来的体重是否减轻,运动皆有益处[95]。但单靠调整饮食便能降低风险的证据却十分有限[96],一些证据支持多摄取绿色蔬菜[97],也有一些证据支持限制含糖饮料[46]。对于葡萄糖耐受不良英语impaired fasting glucose的人士,只改变饮食习惯和运动,或同时使用二甲双胍阿拉伯糖,可以降低罹患糖尿病的风险[25][98],改变生活方式比服用二甲双胍还有效[25]。一份2017年的回顾文献指出,长期的生活方式改造能降低28%罹病风险,但糖尿病药物在停药后将无助于减低风险[99]。血中的维生素D含量较低会增加糖尿病的风险,但口服补充维生素D3无法改善罹病风险[100]

管理

编辑

2型糖尿病的疾病管理着重于调整生活型态、减低其他心血管风险因素,以及将血糖维持在正常值[25]英国国民保健署建议2型糖尿病初诊人士进行血糖自我监测[101],但是对于没有使用多剂量胰岛素的人士,自我监测的益处仍有争议[25][102]。管理其他心血管风险因素如高血压高胆固醇微量白蛋白尿能改善预期余命[25]。将收缩压控制于 140 mmHg 以下能够降低死亡风险,并改善预后[103],更高积极的血压管理(低于130/80 mmHg)相较于标准血压管理(140/85–100 mmHg)虽能使中风风险轻微减低,但对总体死亡风险并没有影响[104]

相对于标准血糖控制(HbA1C7-7.9%),更积极的血糖控制(HbA1C<6%)似乎并未改善死亡率[105][106]。2型糖尿病的治疗目标通常是HbA1C低于7%至8%或空腹血糖低于7.2 mmol/L(130 mg/dl);但若将低血糖症和预期余命等特定风险纳入考量,这些目标在专业临床会诊后可以改变[107][108]。尽管临床指引建议医师须衡量血糖控制的长期好处和立即伤害,许多人仍被过度治疗,例如对预期余命小于9年的患者进行强化血糖控制便没有好处[109]

所有患有2型糖尿病的人士都应定期进行眼科检查[13]。有限的证据显示以刮除牙结石和牙根整平术治疗牙周病或许可以短期改善糖尿病患者的血糖[110],但没有证据显示这样的改善能持续超过4个月[110]。目前并没有证据表示治疗牙周病的药物有助于改善血糖[110]

生活方式

编辑

适当的饮食和运动是糖尿病治疗的基础[24],运动量越充足效果越佳[111]。运动能改善血糖控制,降低体脂和血脂,这些效果即使在没有体重减轻的情形下也都有证据支持[112]有氧运动可使HbA1c下降并改善胰岛素敏感性[113]阻力训练也有改善的效果,若能同时进行有氧运动及阻力训练效果尤佳[113]

能促进减重的饮食英语diabetic diet调整相当重要[114]。目前最理想的饮食配方为何仍有争议[114],但目前已知低升糖指数饮食英语low glycemic index diet低碳水化合物饮食可以改善血糖[115][116]。在2型糖尿病发病后短时间内开始超低卡路里饮食英语Very-low-calorie diet能使疾病缓解[117]素食者相对来说罹患糖尿病的机会较低,但荤食摄取适量者效果则与素食无异[118]。目前尚无证据支持肉桂可以改善2型糖尿病患者的血糖[119]

适当的卫教也能协助患者控制血糖,效果最佳可维持到24个月[120]。若轻度糖尿病患者的血糖无法借由调整生活型态改善,则可能需要考虑配合药物治疗[24]。目前仍尚无足够证据说明调整生活型态对于患者死亡率的影响[94]

药物

编辑
 
二甲双胍500mg片剂

目前有数类抗糖尿病药,如双胍类、磺酰脲类(sulfonylureas)、噻唑烷二酮类thiazolidinedione)、GLP-1类似物DPP-4抑制剂SGLT2抑制剂等。遵照医师建议使用药物能有效控制病况,病患应定时用药并定时回诊追踪,以降低血糖波动,达到最好控制效果。

  • 双胍类
    • 由于有证据表明二甲双胍metformin)可降低死亡率,因此通常将其作为第一线治疗药物[7][25][121]。然而目前有关此议结论仍有疑问[122],且并非所有第二线糖尿病患者都能一体适用,如有低血氧或是肾、肝、心脏疾病者,不建议使用二甲双胍[24]。若二甲双胍metformin)不足以控制病情,则可使用另一个类的口服制剂或注射胰岛素辅助控制[107]
  • 磺酰脲类
    • 用于2型糖尿病的抗糖尿病药,主要作用是促进胰脏β细胞分泌胰岛素。目前较常用的为格列美脲,为第二代磺酰脲类药物。[123]
  • 噻唑烷二酮类
    • 用于2型糖尿病的抗糖尿病药,主要作用是增进胰岛素的感受性,改善血糖控制。[124]目前有吡格列酮(Pioglitazone)、罗格列酮(Rosiglitazone)药物。吡格列酮(Pioglitazone)因有报导指出此药物会增加膀胱癌的风险,法国跟德国已经暂时停止销售这个药物。[125]罗格列酮(Rosiglitazone)过去曾有心脏副作用疑虑[126][127][128],2010年FDA曾限制使用条件,并要求药商执行药品风险评估暨管控计划[129][130],台湾亦跟进管制措施,直到2016年才解除限制。[131]
  • DPP-4抑制剂
  • SGLT2抑制剂
    • 用于2型糖尿病的抗糖尿病药,主要作用是抑制葡萄糖在肾脏的再吸收而使葡萄糖由尿液排除的抗糖尿病药[136], SGLT2抑制剂可以降低血糖水平和体重,并且可以降低舒张压与收缩压。[137]常见药物如达格列净卡纳格列净英语Canagliflozin曲格列净英语Ertugliflozin恩格列净,恩格列净是首支SGLT2抑制剂类降糖药有完成心血管预后研究的药品,目前唯一口服降糖药被研究证实有控糖、护心、保肾及减重等效果。[138]SGLT2抑制剂为第2型糖尿病的治疗药物,国际临床研究结果显示,恩格列净(Empagliflozin)在管理心脏衰竭部分亦有成效,因此除糖尿病适应症外,同时具有心衰竭适应症,据2021年发表的国际临床试验证明,可以降低25%心衰竭住院或心血管死亡风险,并且延缓4倍肾丝球过滤率(eGFR)下降速率。SGLT2抑制剂同时被纳入心脏衰竭的治疗指引[139]
  • GLP-1类似物(肠泌素)
    • 用于2型糖尿病的抗糖尿病药,主要作用是提升胰岛素分泌,并抑制餐后升糖素的分泌,达到降低血糖的效果。常见药物有艾塞那肽、 利拉鲁肽…等,需要用注射方式使用。[140]

2018年医学期刊The Lancet分析指出SGLT2抑制剂效果优于GLP-1与DDP-4可以降低心衰竭住院的风险、减少心肌梗死、中风、心血管死亡等心血管不良总和事件,甚至可以减少45%肾脏病变风险。[141] SGLT2抑制剂达格列净恩格列净都经实验证实可降低心脏衰竭病患因心血管因素而死亡或入院的风险[142],2020年SGLT2抑制剂也通过美国FDA认证可用于治疗心脏衰竭[143]

截至2015年为止研究指出,二甲双胍(Metformin)因为其效果、价钱、安全性总和而言仍然是一线的最佳药物,但因其副作用不建议肾功能衰竭者使用。[144] 除一线用药外,其余糖尿病药物的选择基于降低血糖、最少副作用,以及患者的喜好、用药习惯,各种患者自身疾病(如自身心血管疾病、慢性肾病)、用药后不适应症(低血糖症)…等。[145]

2016年的研究指出糖尿病患者的血压最好控制于140至150 mmHg之间[146]

胰岛素可以单独使用,也可以配合其他口服药剂一起使用[25],大多数人最初都无需注射胰岛素[13]。当使用时,通常在夜间采用一种长效制剂,同时继续口服药物[24][25]。剂量会过一段时间才起效,达到控制血糖的效果[25]。当夜间胰岛素不足,每日两次胰岛素可达到更好的控制[24]。长效胰岛素,甘精胰岛素glargine)和地特胰岛素效果及安全性相同[147],其效果并不优于中效胰岛素(NPH insulin),且价格又较贵,因此截至2010年的研究并无发现其实质效益[148]。对于怀孕的患者,胰岛素通常是治疗选择[24]

过去谣传补充维生素D可预防糖尿病,根据2019年美国糖尿病学会年会最新研究指出,针对糖尿病前期的患者补充维生素D无法预防患者恶化成糖尿病,该研究同步发表在新英格兰医学期刊。[149]

复方药物

编辑

目前糖尿病口服药物亦有复方药物,如Glyxambi(糖顺平)其限用于已接受过最大耐受剂量的二甲双胍(Metformin),且并用恩格列净(Empagliflozin, Jardiance,恩排糖) 或利拉利汀(Linagliptin Trajenta,糖渐平) 治疗,糖化血色素值(HbA1c)仍未低于8.5%者,亦有其他不同类型的复方药物例如DPP-4抑制剂西格列汀(Sitagliptin, Januvia,佳糖维)与二甲双胍(Metformin) 的复方药物JANUMET(捷糖稳)、利拉利汀(Linagliptin, Trajenta,糖渐平)与二甲双胍(Metformin) 的复方药物Trajenta Duo(糖倍平)、维格列汀( Vildagliptin, Galvus,高糖优适) 与二甲双胍(Metformin) 的复方药物Galvus Met(高糖优美)。SGLT2抑制剂复方药物也有恩格列净(Empagliflozin, Jardiance,恩排糖) 与二甲双胍(Metformin) 的复方药物 Jardiance Duo(恩美糖)、达格列净(Dapagliflozin, Forxiga,福适佳) 与二甲双胍(Metformin) 的复方药物Xigduo XR(释多糖)。复方药物可提高患者服药顺从性,也可降低口服药物的复杂程度,如Glyxambi(糖顺平)综合Empagliflozin 、Linagliptin优点,能降糖、降低体重、降低心血管疾病、保肾、不易低血糖多重功效。[150]

外科手术

编辑

对于超重的患者,代谢手术(减肥手术)是治疗糖尿病的有效措施[151]。许多人手术后,能够维持正常的血糖水平并服用很少或根本不服用药物[152],且长期死亡率也会降低了[153]。不过仍存在低于1%的短期手术死亡风险[154]。目前建议身高体重指数(BMI)大于35的糖尿病患者进行代谢手术[155][156]。BMI介于30-35之间的若血糖控制不佳或有高度胰岛素阻抗者,也建议进行[155][156]

流行病学

编辑
 
2014年全球糖尿病患病率(每1000个居民),世界平均为9.2%。

2015年,全球2型糖尿病患者约有3.92亿人,占糖尿病患者的90%[10][11],约相当于世界成人人口的6%[11]。糖尿病是发达国家发展中国家常见的疾病[10]。在经济欠发达地区仍然相当罕见[13]

糖尿病是台湾人十大死因之一,根据2021年卫福部统计,台湾现行糖尿病患人数约200多万人,并以每年25,000名的速率持续增加中,对国人的健康影响不容小觑[157]

女性在某些族裔中似乎罹病风险较高[10][158],如南亚裔太平洋岛民Pacific Islander)、拉美裔Latino),和美洲原住民等族裔群体似乎有更高的患病风险[24]。这可能是由于这些群体对西方的生活方式更为敏感[159]。传统上,2型糖尿病归类为成人疾病,然而随着儿童肥胖率英语Childhood obesity的增加,越来越多的儿童也被诊断罹患2型糖尿病[10]。美国青少年被诊断为2型糖尿病的频率与1型糖尿病同样频繁[13]

糖尿病患者在1985年的数量估计在3000万,在1995年增至1.36亿,2005年增加至2.17亿[18]。增加的原因主要是全球人口老龄化、运动减少,和肥胖率增加[18]。至2000年为止,糖尿病患者数最多的五个国家是印度(3170万)、中国(2080万)、美国(1770万)、印度尼西亚(840万)和日本(680万)[160]。糖尿病被世界卫生组织确认为一种全球性流行病[1]

历史

编辑

糖尿病是最早被记录的疾病之一[21],早在公元前约1500年的埃及手稿将其称为“尿液过多”[161]。据信首个有记载的病例被认为是1型糖尿病[161]。同时期,古印度的医生在同期也发现了该病,由于患者的尿液会引来蚂蚁,因此将其归称为“蜜糖尿”(madhumeha[161]。而现今所使用的医学术语“diabetes”一词源自希腊文的“siphon”(虹吸管),意思是“在弯管中流动”,描述其多尿的症状。该词是由希腊人孟菲斯阿波罗尼奥斯英语Apollonius (physician)Apollonius of Memphis)在公元前230年首次使用[161]。根据盖伦的描述,在罗马帝国时期,该病可能属罕见病,在其生涯中仅见两例[161]

公元400-500年,印度医生妙闻揭罗迦英语Charaka首次将1型和2型糖尿病区分开来,认为1型与青年有关,而2型与体重过重有关[161]。“mellitus”一词由英国人约翰·罗尔(John Rolle)于1700年代末期首次使用,用于与频繁排尿的尿崩症相区分[161]。虽然有关糖尿病的纪述相当古老,但该病一直没有有效的治疗。直到20世纪初,加拿大人弗雷德里克·班廷查尔斯·贝斯特在1921年和1922年发现胰岛素[161]。随后又在1940年代开发出长效NPH胰岛素[161]

备注

编辑
  1. ^ 对于本条目名称的用词解释:自从1997年,美国糖尿病学会(ADA)与世界卫生组织(WHO)的专家共同开会决定糖尿病的重新命名,废弃了原来的 NIDDM、误用的Type II(罗马数字),而指定使用 Type 2(阿拉伯数字)。主要是由于医学的新进展以及避免混淆(Type II 近似 Type 11,eleven);并且不使用“Diabetes mellitus Type 2”而是使用“Type 2 diabetes mellitus”(T2DM,其后简称T2D)。台湾国健署及糖尿病学会亦使用“第2型”,非“第二型”,而且不用“第II型”;顺序亦有规定:“2型糖尿病”,非“糖尿病第2型”。参考来源见讨论页。

参考文献

编辑
  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Diabetes Fact sheet N°312. World Health Organization. August 2011 [2012-01-09]. (原始内容存档于2013-08-26). 
  2. ^ Diabetes Blue Circle Symbol. International Diabetes Federation. 2006-03-17 [2017-06-12]. (原始内容存档于2007-08-05). 
  3. ^ 3.0 3.1 3.2 3.3 3.4 Diabetes Tests & Diagnosis. National Institute of Diabetes and Digestive and Kidney Diseases. [2017-12-16]. (原始内容存档于2020-05-13). 
  4. ^ 4.0 4.1 Pasquel, FJ; Umpierrez, GE. Hyperosmolar hyperglycemic state: a historic review of the clinical presentation, diagnosis, and treatment.. Diabetes Care. November 2014, 37 (11): 3124–31. PMC 4207202 . PMID 25342831. doi:10.2337/dc14-0984. 
  5. ^ 5.0 5.1 Fasanmade, OA; Odeniyi, IA; Ogbera, AO. Diabetic ketoacidosis: diagnosis and management. African Journal of Medicine and Medical Sciences. June 2008, 37 (2): 99–105. PMID 18939392. 
  6. ^ 6.0 6.1 6.2 6.3 6.4 6.5 6.6 Symptoms & Causes of Diabetes. National Institute of Diabetes and Digestive and Kidney Diseases. 2016-11 [2017-12-16]. (原始内容存档于2021-01-13). 
  7. ^ 7.0 7.1 7.2 Maruthur, NM; Tseng, E; Hutfless, S; Wilson, LM; Suarez-Cuervo, C; Berger, Z; Chu, Y; Iyoha, E; Segal, JB; Bolen, S. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis. Annals of Internal Medicine. 2016-04-19, 164: 740–51. PMID 27088241. doi:10.7326/M15-2650. 
  8. ^ 8.0 8.1 Cetinkunar, S; Erdem, H; Aktimur, R; Sozen, S. Effect of bariatric surgery on humoral control of metabolic derangements in obese patients with type 2 diabetes mellitus: How it works.. World Journal of Clinical Cases. 2015-06-16, 3 (6): 504–9. PMC 4468896 . PMID 26090370. doi:10.12998/wjcc.v3.i6.504. 
  9. ^ 9.0 9.1 Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus.. Drugs. February 2005, 65 (3): 385–411. PMID 15669880. doi:10.2165/00003495-200565030-00005. 
  10. ^ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 Melmed, Shlomo; Polonsky, Kenneth S.; Larsen, P. Reed; Kronenberg, Henry M. (编). Williams textbook of endocrinology. 12th. Philadelphia: Elsevier/Saunders. 2011: 1371–1435. ISBN 978-1-4377-0324-5. 
  11. ^ 11.0 11.1 11.2 11.3 GBD 2015 Disease and Injury Incidence and Prevalence, Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015.. The Lancet. 2016-10-08, 388 (10053): 1545–1602. PMC 5055577 . PMID 27733282. doi:10.1016/S0140-6736(16)31678-6. 
  12. ^ MacKay, Ian; Rose, Noel (编). The Autoimmune Diseases. Academic Press. 2014: 575. ISBN 978-0-123-84929-8. OCLC 965646175. 
  13. ^ 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 13.15 13.16 Gardner, David G.; Shoback, Dolores (编). Chapter 17: Pancreatic hormones & diabetes mellitus. Greenspan's basic & clinical endocrinology 9th. New York: McGraw-Hill Medical. 2011. ISBN 0-07-162243-8. OCLC 613429053. 
  14. ^ Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D. Metformin monotherapy for type 2 diabetes mellitus.. Cochrane Database of Systematic Reviews. 2005-07-20, (3): CD002966. PMID 16034881. doi:10.1002/14651858.CD002966.pub3. 
  15. ^ Malanda UL, Welschen LM, Riphagen II, Dekker JM, Nijpels G, Bot SD. Self-monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin.. Cochrane Database of Systematic Reviews. 2012-01-18, 1: CD005060. PMID 22258959. doi:10.1002/14651858.CD005060.pub3. 
  16. ^ Ganguly, S; Tan, HC; Lee, PC; Tham, KW. Metabolic bariatric surgery and type 2 diabetes mellitus: an endocrinologist's perspective.. The Journal of Biomedical Research. April 2015, 29 (2): 105–11. PMC 4389109 . PMID 25859264. doi:10.7555/JBR.29.20140127. 
  17. ^ Moscou, Susan. Getting the word out: advocacy, social marketing, and policy development and enforcement. Truglio-Londrigan, Marie; Lewenson, Sandra B. (编). Public health nursing: practicing population-based care 2nd. Burlington, MA: Jones & Bartlett Learning. 2013: 317. ISBN 978-1-4496-4660-8. OCLC 758391750. 
  18. ^ 18.0 18.1 18.2 Smyth, S; Heron, A. Diabetes and obesity: the twin epidemics. Nature Medicine. January 2006, 12 (1): 75–80. PMID 16397575. doi:10.1038/nm0106-75. 
  19. ^ Tfayli, H; Arslanian, S. Pathophysiology of type 2 diabetes mellitus in youth: the evolving chameleon. Arquivos Brasileiros de Endocrinologia & Metabologia. March 2009, 53 (2): 165–74. PMC 2846552 . PMID 19466209. doi:10.1590/s0004-27302009000200008. 
  20. ^ Imperatore, Giuseppina; Boyle, James P.; Thompson, Theodore J.; Case, Doug; Dabelea, Dana; Hamman, Richard F.; Lawrence, Jean M.; Liese, Angela D.; Liu, Lenna L. Projections of Type 1 and Type 2 Diabetes Burden in the U.S. Population Aged <20 Years Through 2050. Diabetes Care. December 2012, 35 (12): 2515–2520 [2017-12-16]. ISSN 0149-5992. PMC 3507562 . PMID 23173134. doi:10.2337/dc12-0669. (原始内容存档于2016-08-14) (英语). 
  21. ^ 21.0 21.1 Leutholtz, Brian C.; Ripoll, Ignacio. Diabetes. Exercise and disease management 2nd. Boca Raton: CRC Press. 2011: 25. ISBN 978-1-4398-2759-8. OCLC 725919496. 
  22. ^ Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective.. Postgraduate Medical Journal. February 2016, 92 (1084): 63–9. PMID 26621825. doi:10.1136/postgradmedj-2015-133281. 
  23. ^ Chi, M.-J.; Liang, C.-K.; Lee, W.-J.; Peng, L.-N.; Chou, Ming-Yueh; Chen, Liang-Kung. Association of new-onset diabetes mellitus in older people and mortality in Taiwan: A 10-year nationwide population-based study. The journal of nutrition, health & aging. 2016-06-01, 21 (2): 227–232. ISSN 1279-7707. doi:10.1007/s12603-016-0751-9. 
  24. ^ 24.00 24.01 24.02 24.03 24.04 24.05 24.06 24.07 24.08 24.09 24.10 24.11 Vijan, S. Type 2 diabetes. Annals of Internal Medicine. 2010-03-02, 152 (5): ITC31–15; quiz ITC316. PMID 20194231. doi:10.7326/0003-4819-152-5-201003020-01003. 
  25. ^ 25.00 25.01 25.02 25.03 25.04 25.05 25.06 25.07 25.08 25.09 25.10 25.11 Ripsin CM, Kang H, Urban RJ. Management of blood glucose in type 2 diabetes mellitus. American Family Physician. January 2009, 79 (1): 29–36. PMID 19145963. 
  26. ^ Pasquier, F. Diabetes and cognitive impairment: how to evaluate the cognitive status?. Diabetes & Metabolism. October 2010,. 36 Suppl 3: S100–5. PMID 21211730. doi:10.1016/S1262-3636(10)70475-4. 
  27. ^ 27.0 27.1 Einarson, Thomas R.; Acs, Annabel; Ludwig, Craig; Panton, Ulrik H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovascular Diabetology. 2018-12, 17 (1): 83 [2021-01-26]. ISSN 1475-2840. PMC 5994068 . PMID 29884191. doi:10.1186/s12933-018-0728-6. (原始内容存档于2021-01-05) (英语). 
  28. ^ Diabetes Mellitus, Fasting Glucose, and Risk of Cause-Specific Death. New England Journal of Medicine. 2011-03-03, 364 (9): 829–841. ISSN 0028-4793. doi:10.1056/nejmoa1008862. 
  29. ^ MENON, V.; AGGARWAL, B. Why are we doing cardiovascular outcome trials in type 2 diabetes?. Cleveland Clinic Journal of Medicine. 2014-11-01, 81 (11): 665–671. ISSN 0891-1150. doi:10.3949/ccjm.81gr.14005. 
  30. ^ LaPatra, SE; Kocan, RM. PCR testing for diagnosis of Ichthyophonus hoferi: Comment on Hamazaki et al. (2013). Diseases of Aquatic Organisms. 2013-11-06, 106 (3): 273–274. ISSN 0177-5103. doi:10.3354/dao02681. 
  31. ^ Graphical Abstract: Chem. Eur. J. 5/2008. Chemistry - A European Journal. 2008-02-08, 14 (5): 1368–1377. ISSN 0947-6539. doi:10.1002/chem.200890010. 
  32. ^ Chen, Hua-Fen; Ho, Ching-An; Li, Chung-Yi. Risk of heart failure in a population with type 2 diabetes versus a population without diabetes with and without coronary heart disease. Diabetes, Obesity and Metabolism. 2018-09-04, 21 (1): 112–119. ISSN 1462-8902. doi:10.1111/dom.13493. 
  33. ^ Kidder, G. W.; Montgomery, C. W. Oxygenation of frog gastric mucosa in vitro. The American Journal of Physiology. 1975-12, 229 (6): 1510–1513 [2021-01-26]. ISSN 0002-9513. PMID 2018. doi:10.1152/ajplegacy.1975.229.6.1510. (原始内容存档于2020-05-18). 
  34. ^ Collins, Allan J.; Foley, Robert N.; Herzog, Charles; Chavers, Blanche M.; Gilbertson, David; Ishani, Areef; Kasiske, Bertram L.; Liu, Jiannong; Mau, Lih-Wen. Excerpts From the US Renal Data System 2009 Annual Data Report. American Journal of Kidney Diseases. 2010-01, 55 (1): A6–A7. ISSN 0272-6386. doi:10.1053/j.ajkd.2009.10.009. 
  35. ^ Bansal, Nidhi; Dhaliwal, Ruban; Weinstock, Ruth S. Management of Diabetes in the Elderly. Medical Clinics of North America. 2015-03, 99 (2): 351–377. ISSN 0025-7125. doi:10.1016/j.mcna.2014.11.008. 
  36. ^ 糖尿病心血管疾病 (PDF). [2021-11-26]. (原始内容 (PDF)存档于2021-11-26). 
  37. ^ 37.0 37.1 Sinclair, A. J.; Abdelhafiz, A. H.; Forbes, A.; Munshi, M. Evidence-based diabetes care for older people with Type 2 diabetes: a critical review. Diabetic Medicine. 2018-11-29, 36 (4): 399–413. ISSN 0742-3071. doi:10.1111/dme.13859. 
  38. ^ Hayashi, T.; Kawashima, S.; Itoh, H.; Yamada, N.; Sone, H.; Watanabe, H.; Hattori, Y.; Ohrui, T.; Yokote, K. Low HDL Cholesterol Is Associated With the Risk of Stroke in Elderly Diabetic Individuals: Changes in the risk for atherosclerotic diseases at various ages. Diabetes Care. 2009-06-09, 32 (7): 1221–1223. ISSN 0149-5992. doi:10.2337/dc08-1677. 
  39. ^ Arauz-Pacheco, C.; Parrott, M. A.; Raskin, P. The Treatment of Hypertension in Adult Patients With Diabetes. Diabetes Care. 2002-01-01, 25 (1): 134–147. ISSN 0149-5992. doi:10.2337/diacare.25.1.134. 
  40. ^ Sowers, James R.; Epstein, Murray. Diabetes Mellitus and Associated Hypertension, Vascular Disease, and Nephropathy. Hypertension. 1995-12, 26 (6): 869–879. ISSN 0194-911X. doi:10.1161/01.hyp.26.6.869. 
  41. ^ 41.0 41.1 Risérus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Progress in Lipid Research. January 2009, 48 (1): 44–51. PMC 2654180 . PMID 19032965. doi:10.1016/j.plipres.2008.10.002. 
  42. ^ 42.0 42.1 Touma, C; Pannain, S. Does lack of sleep cause diabetes?. Cleveland Clinic journal of medicine. 2011 Aug, 78 (8): 549–58. PMID 21807927. doi:10.3949/ccjm.78a.10165. 
  43. ^ Christian, P; Stewart, CP. Maternal micronutrient deficiency, fetal development, and the risk of chronic disease. The Journal of nutrition. 2010 Mar, 140 (3): 437–45. PMID 20071652. doi:10.3945/jn.109.116327. 
  44. ^ Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Doré J, Mattila I, Plichta DR, Pöhö P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jørgensen T, Holm JB, Trošt K, MetaHIT Consortium, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016-07-21, 535 (7612): 376–381. PMID 27409811. doi:10.1038/nature18646. 
  45. ^ Pan, A; Wang, Y; Talaei, M; Hu, FB; Wu, T. Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis.. The Lancet Diabetes & Endocrinology. 2015-09-17, 3: 958–967. PMC 4656094 . PMID 26388413. doi:10.1016/S2213-8587(15)00316-2. 
  46. ^ 46.0 46.1 Vasanti S. Malik; Barry M. Popkin; George A. Bray; Jean-Pierre Després; Frank B. Hu. Sugar Sweetened Beverages, Obesity, Type 2 Diabetes and Cardiovascular Disease risk. Circulation. 2010-03-23, 121 (11): 1356–64. PMC 2862465 . PMID 20308626. doi:10.1161/CIRCULATIONAHA.109.876185. 
  47. ^ Vasanti S. Malik; Barry M. Popkin; George A. Bray; Jean-Pierre Després; Walter C. Willett; Frank B. Hu. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes: A meta-analysis. Diabetes Care. 2010 Nov, 33 (11): 2477–83. PMC 2963518 . PMID 20693348. doi:10.2337/dc10-1079. 
  48. ^ Emily A Hu; An Pan; Vasanti Malik; Qi Sun. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ (Clinical research ed.). 2012-03-15, 344: e1454. PMC 3307808 . PMID 22422870. doi:10.1136/bmj.e1454. 
  49. ^ I-Min Lee; Shiroma, Eric J; Lobelo, Felipe; Puska, Pekka; Blair, Steven N; Katzmarzyk, Peter T. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. The Lancet. 2012-07-01. doi:10.1016/S0140-6736(12)61031-9. 
  50. ^ Lind, L; Lind, PM. Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease?. Journal of Internal Medicine. Jun 2012, 271 (6): 537–53. PMID 22372998. doi:10.1111/j.1365-2796.2012.02536.x. 
  51. ^ 51.0 51.1 Herder, C; Roden, M. Genetics of type 2 diabetes: pathophysiologic and clinical relevance. European journal of clinical investigation. 2011 Jun, 41 (6): 679–92. PMID 21198561. doi:10.1111/j.1365-2362.2010.02454.x. 
  52. ^ Monogenic Forms of Diabetes: Neonatal Diabetes Mellitus and Maturity-onset Diabetes of the Young. National Diabetes Information Clearinghouse (NDIC) (National Institute of Diabetes and Digestive and Kidney Diseases, NIH). 2007年3月 [2008-08-04]. (原始内容存档于2008-07-04). 
  53. ^ 53.0 53.1 Bethel, edited by Mark N. Feinglos, M. Angelyn. Type 2 diabetes mellitus: an evidence-based approach to practical management. Totowa, NJ: Humana Press. 2008: 462 [2014-03-16]. ISBN 978-1-58829-794-5. (原始内容存档于2013-10-15). 
  54. ^ Izzedine, H; Launay-Vacher, V; Deybach, C; Bourry, E; Barrou, B; Deray, G. Drug-induced diabetes mellitus. Expert opinion on drug safety. 2005 Nov, 4 (6): 1097–109. PMID 16255667. doi:10.1517/14740338.4.6.1097. 
  55. ^ Sampson, UK; Linton, MF; Fazio, S. Are statins diabetogenic?. Current opinion in cardiology. 2011 Jul, 26 (4): 342–7. PMC 3341610 . PMID 21499090. doi:10.1097/HCO.0b013e3283470359. 
  56. ^ Saad F, Gooren L. The role of testosterone in the metabolic syndrome: a review. The Journal of Steroid Biochemistry and Molecular Biology. March 2009, 114 (1–2): 40–3. PMID 19444934. doi:10.1016/j.jsbmb.2008.12.022. 
  57. ^ Farrell JB, Deshmukh A, Baghaie AA. Low testosterone and the association with type 2 diabetes. The Diabetes Educator. 2008, 34 (5): 799–806. PMID 18832284. doi:10.1177/0145721708323100. 
  58. ^ 58.0 58.1 58.2 58.3 David K McCulloch; R Paul Robertson,. Pathogenesis of type 2 diabetes mellitus. Uptodate. 2019-10 [2019-11-22]. (原始内容存档于2020-12-22). 
  59. ^ 59.0 59.1 59.2 59.3 Saisho, Yoshifumi. β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World Journal of Diabetes. 2015-02-15, 6 (1): 109–124 [2019-11-22]. ISSN 1948-9358. PMC 4317303 . PMID 25685282. doi:10.4239/wjd.v6.i1.109. (原始内容存档于2021-01-05). 
  60. ^ Why We Are Fat | BU Today. Boston University. [2019-12-07]. (原始内容存档于2021-01-05) (英语). 
  61. ^ Shanik, Michael H.; Xu, Yuping; Škrha, Jan; Dankner, Rachel; Zick, Yehiel; Roth, Jesse. Insulin Resistance and Hyperinsulinemia: Is hyperinsulinemia the cart or the horse?. Diabetes Care. 2008-02-01, 31 (Supplement 2): S262–S268 [2019-12-07]. ISSN 0149-5992. PMID 18227495. doi:10.2337/dc08-s264. (原始内容存档于2020-12-22) (英语). 
  62. ^ Diabetes mellitus a guide to patient care.. Philadelphia: Lippincott Williams & Wilkins. 2007: 15 [2014-03-16]. ISBN 978-1-58255-732-8. (原始内容存档于2013-10-16). 
  63. ^ Meshkani, Reza; Adeli, Khosrow. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clinical Biochemistry. 2009-09-01, 42 (13): 1331–1346 [2019-11-22]. ISSN 0009-9120. doi:10.1016/j.clinbiochem.2009.05.018. (原始内容存档于2020-08-08). 
  64. ^ Turcotte, Lorraine P; Fisher, Jonathan S. Skeletal Muscle Insulin Resistance: Roles of Fatty Acid Metabolism and Exercise. Physical Therapy. 2008-11, 88 (11): 1279–1296 [2019-11-22]. ISSN 0031-9023. PMC 2579902 . PMID 18801860. doi:10.2522/ptj.20080018. (原始内容存档于2021-01-05). 
  65. ^ 65.0 65.1 Taylor, Roy. Causation of Type 2 Diabetes — The Gordian Knot Unravels. New England Journal of Medicine. 2004-02-12, 350 (7): 639–641. ISSN 0028-4793. PMID 14960738. doi:10.1056/NEJMp038239. 
  66. ^ Ferrannini, E.; Vichi, S.; Beck-Nielsen, H.; Laakso, M.; Paolisso, G.; Smith, U. Insulin action and age. European Group for the Study of Insulin Resistance (EGIR). Diabetes. 1996-07-01, 45 (7): 947–953. ISSN 0012-1797. doi:10.2337/diabetes.45.7.947. 
  67. ^ Goulet, Eric D.B.; Hassaine, Assia; Dionne, Isabelle J.; Gaudreau, Pierrette; Khalil, Abdelouahed; Fulop, Tamàs; Shatenstein, Bryna; Tessier, Daniel; Morais, José A. Frailty in the elderly is associated with insulin resistance of glucose metabolism in the postabsorptive state only in the presence of increased abdominal fat. Experimental Gerontology. 2009-11, 44 (11): 740–744. ISSN 0531-5565. doi:10.1016/j.exger.2009.08.008. 
  68. ^ DeFronzo, R. A. Glucose Intolerance and Aging: Evidence for Tissue Insensitivity to Insulin. Diabetes. 1979-12-01, 28 (12): 1095–1101. ISSN 0012-1797. doi:10.2337/diab.28.12.1095. 
  69. ^ Taylor, Roy. Causation of Type 2 Diabetes — The Gordian Knot Unravels. New England Journal of Medicine. 2004-02-12, 350 (7): 639–641. ISSN 0028-4793. PMID 14960738. doi:10.1056/NEJMp038239. 
  70. ^ Gulati, S.; Misra, A. Abdominal obesity and type 2 diabetes in Asian Indians: dietary strategies including edible oils, cooking practices and sugar intake. European Journal of Clinical Nutrition. 2017-07, 71 (7): 850–857 [2019-11-22]. ISSN 1476-5640. doi:10.1038/ejcn.2017.92. (原始内容存档于2020-11-16) (英语). 
  71. ^ Ramachandran, Ambady; Chamukuttan, Snehalatha; Shetty, Samith A.; Arun, Nanditha; Susairaj, Priscilla. Obesity in Asia – is it different from rest of the world. Diabetes/Metabolism Research and Reviews. 2012, 28 (s2): 47–51. ISSN 1520-7560. doi:10.1002/dmrr.2353 (英语). 
  72. ^ Robertson, R. Paul; Harmon, Jamie; Tran, Phuong Oanh; Tanaka, Yoshito; Takahashi, Hiroki. Glucose Toxicity in β-Cells: Type 2 Diabetes, Good Radicals Gone Bad, and the Glutathione Connection. Diabetes. 2003-03-01, 52 (3): 581–587 [2019-12-07]. ISSN 0012-1797. PMID 12606496. doi:10.2337/diabetes.52.3.581. (原始内容存档于2020-12-22) (英语). 
  73. ^ Hue, Louis; Taegtmeyer, Heinrich. The Randle cycle revisited: a new head for an old hat. American Journal of Physiology - Endocrinology and Metabolism. 2009, 297 (3): E578–E591 [2019-12-07]. ISSN 0193-1849. PMC 2739696 . PMID 19531645. doi:10.1152/ajpendo.00093.2009. (原始内容存档于2021-01-05). 
  74. ^ Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation (PDF). Geneva: World Health Organization. 2006: 21. ISBN 978-92-4-159493-6. 
  75. ^ Vijan, Sandeep. Type 2 Diabetes. Annals of Internal Medicine. 2010-03-02, 152 (5): ITC3–1. ISSN 0003-4819. PMID 20194231. doi:10.7326/0003-4819-152-5-201003020-01003 (英语). 
  76. ^ World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO Consultation. Part 1. Diagnosis and classification of diabetes mellitus. [2007-05-29]. (原始内容存档于2007-05-29). 
  77. ^ 77.0 77.1 77.2 International Expert, Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009 Jul, 32 (7): 1327–34. PMC 2699715 . PMID 19502545. doi:10.2337/dc09-9033. 
  78. ^ Diagnosis and classification of diabetes mellitus. Diabetes Care (American Diabetes Association). January 2010,. 33 Suppl 1 (Supplement_1): S62–9. PMC 2797383 . PMID 20042775. doi:10.2337/dc10-S062. 
  79. ^ American Diabetes, Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. January 2012,. 35 Suppl 1: S64–71. PMID 22187472. doi:10.2337/dc12-s064. 
  80. ^ Kumar, Vinay; Fausto, Nelson; Abbas, Abul K.; Cotran, Ramzi S. ; Robbins, Stanley L. Robbins and Cotran Pathologic Basis of Disease 7th. Philadelphia, Pa.: Saunders. 2005: 1194–1195. ISBN 0-7216-0187-1. 
  81. ^ Diabetes mellitus a guide to patient care.. Philadelphia: Lippincott Williams & Wilkins. 2007: 201 [2014-03-16]. ISBN 978-1-58255-732-8. (原始内容存档于2013-10-16). 
  82. ^ 存档副本. [2021-10-25]. (原始内容存档于2022-03-03). 
  83. ^ 存档副本. [2021-10-25]. (原始内容存档于2021-10-27). 
  84. ^ 84.0 84.1 Valdez R. Detecting Undiagnosed Type 2 Diabetes: Family History as a Risk Factor and Screening Tool. Journal of Diabetes Science and Technology. 2009, 3 (4): 722–26. PMC 2769984 . PMID 20144319. doi:10.1177/193229680900300417. 
  85. ^ 85.0 85.1 Selph, S; Dana, T; Blazina, I; Bougatsos, C; Patel, H; Chou, R. Screening for Type 2 Diabetes Mellitus: A Systematic Review for the U.S. Preventive Services Task Force. Annals of Internal Medicine. 2015-06-22, 162 (11): 765–76. PMID 25867111. doi:10.7326/M14-2221. 
  86. ^ 86.0 86.1 Archived: Diabetes Mellitus (Type 2) in Adults: Screening. U.S. Preventive Services Task Force. June 2008 [2014-03-16]. (原始内容存档于2014-02-07). 
  87. ^ Siu, AL. Screening for Abnormal Blood Glucose and Type 2 Diabetes Mellitus: U.S. Preventive Services Task Force Recommendation Statement. Annals of Internal Medicine. 2015-10-27, 163 (11): 861–68. PMID 26501513. doi:10.7326/M15-2345. 
  88. ^ Draft Recommendation Statement Screening for Abnormal Glucose and Type 2 Diabetes Mellitus. U.S. Preventive Services Task Force. [2014-10-07]. (原始内容存档于2014-10-09). 
  89. ^ Standards of Medical Care in Diabetes – 2015: Summary of Revisions. Diabetes Care. 2015, 54 (38): S4. PMID 25537706. doi:10.2337/dc15-S003. 
  90. ^ Kirkman, M. S.; Briscoe, V. J.; Clark, N.; Florez, H.; Haas, L. B.; Halter, J. B.; Huang, E. S.; Korytkowski, M. T.; Munshi, M. N. Diabetes in Older Adults. Diabetes Care. 2012-10-25, 35 (12): 2650–2664. ISSN 0149-5992. doi:10.2337/dc12-1801. 
  91. ^ 衛生福利部國民健康署,成人預防保健. (原始内容存档于2020-12-11). 
  92. ^ Raina Elley C, Kenealy T. Lifestyle interventions reduced the long-term risk of diabetes in adults with impaired glucose tolerance. Evid Based Med. December 2008, 13 (6): 173. PMID 19043031. doi:10.1136/ebm.13.6.173. 
  93. ^ Orozco LJ, Buchleitner AM, Gimenez-Perez G, Roqué I Figuls M, Richter B, Mauricio D. Mauricio, Didac , 编. Exercise or exercise and diet for preventing type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008, (3): CD003054. PMID 18646086. doi:10.1002/14651858.CD003054.pub3. 
  94. ^ 94.0 94.1 Schellenberg, ES.; Dryden, DM.; Vandermeer, B.; Ha, C.; Korownyk, C. Lifestyle Interventions for Patients With and at Risk for Type 2 Diabetes: A Systematic Review and Meta-analysis. Annals of Internal Medicine. October 2013, 159 (8): 543–51. PMID 24126648. doi:10.7326/0003-4819-159-8-201310150-00007. 
  95. ^ O'Gorman, DJ; Krook, A. Exercise and the treatment of diabetes and obesity. The Medical clinics of North America. 2011 Sep, 95 (5): 953–69. PMID 21855702. doi:10.1016/j.mcna.2011.06.007. 
  96. ^ Nield L, Summerbell CD, Hooper L, Whittaker V, Moore H. Nield, Lucie , 编. Dietary advice for the prevention of type 2 diabetes mellitus in adults. Cochrane Database Syst Rev. 2008, (3): CD005102. PMID 18646120. doi:10.1002/14651858.CD005102.pub2. 
  97. ^ Carter, P; Gray, LJ; Troughton, J; Khunti, K; Davies, MJ. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ (Clinical research ed.). 2010-08-18, 341: c4229. PMC 2924474 . PMID 20724400. doi:10.1136/bmj.c4229. 
  98. ^ Santaguida PL; Balion C; Hunt D; et al. Diagnosis, prognosis, and treatment of impaired glucose tolerance and impaired fasting glucose (PDF). Evid Rep Technol Assess (Summ). August 2005, (128): 1–11 [2014-03-16]. PMID 16194123. (原始内容 (PDF)存档于2008-09-10). 
  99. ^ Haw, JS; Galaviz, KI; Straus, AN; Kowalski, AJ; Magee, MJ; Weber, MB; Wei, J; Narayan, KMV; Ali, MK. Long-term Sustainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Internal Medicine. 2017-11-06, 177 (12): 1808–17. PMID 29114778. doi:10.1001/jamainternmed.2017.6040. 
  100. ^ Seida, Jennifer C.; Mitri, Joanna; Colmers, Isabelle N.; Majumdar, Sumit R.; Davidson, Mayer B.; Edwards, Alun L.; Hanley, David A.; Pittas, Anastassios G.; Tjosvold, Lisa; Johnson, Jeffrey A. Effect of Vitamin D3 Supplementation on Improving Glucose Homeostasis and Preventing Diabetes: A Systematic Review and Meta-Analysis. The Journal of Clinical Endocrinology & Metabolism. Oct 2014, 99 (10): 3551–60. PMC 4483466 . PMID 25062463. doi:10.1210/jc.2014-2136. 
  101. ^ Type 2 diabetes: The management of type 2 diabetes. May 2009 [2018-04-27]. (原始内容存档于2015-05-22). 
  102. ^ Farmer, AJ; Perera, R; Ward, A; Heneghan, C; Oke, J; Barnett, AH; Davidson, MB; Guerci, B; Coates, V; Schwedes, U; O'Malley, S. Meta-analysis of individual patient data in randomised trials of self monitoring of blood glucose in people with non-insulin treated type 2 diabetes. The BMJ. 27 February 2012, 344: e486. PMID 22371867. doi:10.1136/bmj.e486. 
  103. ^ Emdin, CA; Rahimi, K; Neal, B; Callender, T; Perkovic, V; Patel, A. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA: the Journal of the American Medical Association. 10 February 2015, 313 (6): 603–15. PMID 25668264. doi:10.1001/jama.2014.18574. 
  104. ^ McBrien, K; Rabi, DM; Campbell, N; Barnieh, L; Clement, F; Hemmelgarn, BR; Tonelli, M; Leiter, LA; Klarenbach, SW; Manns, BJ. Intensive and Standard Blood Pressure Targets in Patients With Type 2 Diabetes Mellitus: Systematic Review and Meta-analysis. Archives of Internal Medicine. 6 August 2012, 172 (17): 1–8. PMID 22868819. doi:10.1001/archinternmed.2012.3147. 
  105. ^ Boussageon, R; Bejan-Angoulvant, T; Saadatian-Elahi, M; Lafont, S; Bergeonneau, C; Kassaï, B; Erpeldinger, S; Wright, JM; Gueyffier, F; Cornu, C. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. The BMJ. 2011-07-26, 343: d4169. PMC 3144314 . PMID 21791495. doi:10.1136/bmj.d4169. 
  106. ^ Webster, MW. Clinical practice and implications of recent diabetes trials. Current Opinion in Cardiology. July 2011, 26 (4): 288–93. PMID 21577100. doi:10.1097/HCO.0b013e328347b139. 
  107. ^ 107.0 107.1 Inzucchi, SE; Bergenstal, RM; Buse, JB; Diamant, M; Ferrannini, E; Nauck, M; Peters, AL; Tsapas, A; Wender, R; Matthews, DR. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes.. Diabetologia. March 2015, 58 (3): 429–42. PMID 25583541. doi:10.1007/s00125-014-3460-0. 
  108. ^ Qaseem, Amir; Wilt, Timothy J.; Kansagara, Devan; Horwitch, Carrie; Barry, Michael J.; Forciea, Mary Ann. Hemoglobin A Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults With Type 2 Diabetes Mellitus: A Guidance Statement Update From the American College of Physicians. Annals of Internal Medicine. 6 March 2018. doi:10.7326/M17-0939. 
  109. ^ Makam, AN; Nguyen, OK. An Evidence-Based Medicine Approach to Antihyperglycemic Therapy in Diabetes Mellitus to Overcome Overtreatment.. Circulation. 10 January 2017, 135 (2): 180–95. PMID 28069712. doi:10.1161/CIRCULATIONAHA.116.022622. 
  110. ^ 110.0 110.1 110.2 Simpson, Terry C.; Weldon, Jo C.; Worthington, Helen V.; Needleman, Ian; Wild, Sarah H.; Moles, David R.; Stevenson, Brian; Furness, Susan; Iheozor-Ejiofor, Zipporah. Treatment of periodontal disease for glycaemic control in people with diabetes mellitus. Cochrane Database of Systematic Reviews. 2015-11-06, (11): CD004714. ISSN 1469-493X. PMID 26545069. doi:10.1002/14651858.CD004714.pub3. 
  111. ^ Smith, AD; Crippa, A; Woodcock, J; Brage, S. Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies.. Diabetologia. December 2016, 59 (12): 2527–45. PMID 27747395. doi:10.1007/s00125-016-4079-0. 
  112. ^ Thomas, D. E.; Elliott, E. J.; Naughton, G. A. Exercise for type 2 diabetes mellitus. The Cochrane Database of Systematic Reviews. 2006-07-19, (3): CD002968. ISSN 1469-493X. PMID 16855995. doi:10.1002/14651858.CD002968.pub2. 
  113. ^ 113.0 113.1 Zanuso S, Jimenez A, Pugliese G, Corigliano G, Balducci S. Exercise for the management of type 2 diabetes: a review of the evidence (PDF). Acta Diabetologica. March 2010, 47 (1): 15–22 [2018-04-27]. PMID 19495557. doi:10.1007/s00592-009-0126-3. (原始内容存档 (PDF)于2020-12-22). 
  114. ^ 114.0 114.1 Davis N, Forbes B, Wylie-Rosett J. Nutritional strategies in type 2 diabetes mellitus. Mount Sinai Journal of Medicine. June 2009, 76 (3): 257–68. PMID 19421969. doi:10.1002/msj.20118. 
  115. ^ Thomas D, Elliott EJ. Thomas, Diana , 编. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database of Systematic Reviews. 2009, (1): CD006296. PMID 19160276. doi:10.1002/14651858.CD006296.pub2. 
  116. ^ Feinman, RD; Pogozelski, WK; Astrup, A; Bernstein, RK; Fine, EJ; Westman, EC; Accurso, A; Frassetto, L; Gower, BA; McFarlane, SI; Nielsen, JV; Krarup, T; Saslow, L; Roth, KS; Vernon, MC; Volek, JS; Wilshire, GB; Dahlqvist, A; Sundberg, R; Childers, A; Morrison, K; Manninen, AH; Dashti, HM; Wood, RJ; Wortman, J; Worm, N. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base.. Nutrition (Burbank, Los Angeles County, Calif.). January 2015, 31 (1): 1–13. PMID 25287761. doi:10.1016/j.nut.2014.06.011. 
  117. ^ Clifton, P. Assessing the evidence for weight loss strategies in people with and without type 2 diabetes.. World journal of diabetes. 15 October 2017, 8 (10): 440–454. PMID 29085571. doi:10.4239/wjd.v8.i10.440. 
  118. ^ Glick-Bauer M, Yeh MC. The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients (Review). 2014, 6 (11): 4822–38. PMC 4245565 . PMID 25365383. doi:10.3390/nu6114822. 
  119. ^ Leach, Matthew J.; Kumar, Saravana. Cinnamon for diabetes mellitus. Cochrane Database of Systematic Reviews. 2012-09-12, (9): CD007170. ISSN 1469-493X. PMID 22972104. doi:10.1002/14651858.CD007170.pub2. 
  120. ^ Attridge, Madeleine; Creamer, John; Ramsden, Michael; Cannings-John, Rebecca; Hawthorne, Kamila. Culturally appropriate health education for people in ethnic minority groups with type 2 diabetes mellitus. Cochrane Database of Systematic Reviews. 2014-09-04, (9): CD006424. ISSN 1469-493X. PMID 25188210. doi:10.1002/14651858.CD006424.pub3. 
  121. ^ Palmer, Suetonia C.; Mavridis, Dimitris; Nicolucci, Antonio; Johnson, David W.; Tonelli, Marcello; Craig, Jonathan C.; Maggo, Jasjot; Gray, Vanessa; De Berardis, Giorgia; Ruospo, Marinella; Natale, Patrizia; Saglimbene, Valeria; Badve, Sunil V.; Cho, Yeoungjee; Nadeau-Fredette, Annie-Claire; Burke, Michael; Faruque, Labib; Lloyd, Anita; Ahmad, Nasreen; Liu, Yuanchen; Tiv, Sophanny; Wiebe, Natasha; Strippoli, Giovanni F.M. Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes. JAMA: the Journal of the American Medical Association. 2016-07-19, 316 (3): 313–24. PMID 27434443. doi:10.1001/jama.2016.9400. 
  122. ^ Boussageon, R; Supper, I; Bejan-Angoulvant, T; Kellou, N; Cucherat, M; Boissel, JP; Kassai, B; Moreau, A; Gueyffier, F; Cornu, C. Groop, Leif , 编. Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials. PLOS Medicine. 2012, 9 (4): e1001204. PMC 3323508 . PMID 22509138. doi:10.1371/journal.pmed.1001204. 
  123. ^ DiPiro, Joseph T. Pharmacotherapy: a pathophysiologic approach 8th ed. New York: McGraw-Hill Medical. 2011. ISBN 0-07-170354-3. OCLC 659763408. 
  124. ^ Richter, Bernd; Bandeira-Echtler, Elizabeth; Bergerhoff, Karla; Clar, Christine; Ebrahim, Susanne H. Cochrane Metabolic and Endocrine Disorders Group , 编. Rosiglitazone for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews. 2007-07-18. doi:10.1002/14651858.CD006063.pub2 (英语). 
  125. ^ Santo, Michael. Diabetes Drug Actos Sales Suspended in France and Germany. HULIQ. 2011-06-10 [2020-05-04]. (原始内容存档于2020-12-22) (英语). 
  126. ^ Anonymous. European Medicines Agency starts review of rosiglitazone-containing medicines. European Medicines Agency. 2018-09-17 [2020-05-04]. (原始内容存档于2021-01-05) (英语). 
  127. ^ Chen, Xin; Yang, Li; Zhai, Suo-di. Risk of cardiovascular disease and all-cause mortality among diabetic patients prescribed rosiglitazone or pioglitazone: a meta-analysis of retrospective cohort studies. Chinese Medical Journal. 2012-12, 125 (23): 4301–4306 [2020-05-04]. ISSN 2542-5641. PMID 23217404. (原始内容存档于2020-05-18). 
  128. ^ Chen, X; Yang, L; Zhai, SD. Risk of cardiovascular disease and all-cause mortality among diabetic patients prescribed rosiglitazone or pioglitazone: a meta-analysis of retrospective cohort studies. Chinese Medical Journal. December 2012, 125 (23): 4301–06. PMID 23217404. 
  129. ^ Home, Philip D; Pocock, Stuart J; Beck-Nielsen, Henning; Curtis, Paula S; Gomis, Ramon; Hanefeld, Markolf; Jones, Nigel P; Komajda, Michel; McMurray, John JV. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. The Lancet. 2009-06, 373 (9681): 2125–2135. ISSN 0140-6736. doi:10.1016/s0140-6736(09)60953-3. 
  130. ^ Research, Center for Drug Evaluation and. FDA Drug Safety Communication: Ongoing review of Avandia (rosiglitazone) and cardiovascular safety. FDA. 2019-06-28 [2020-05-04]. (原始内容存档于2020-12-22) (英语). 
  131. ^ 卫生福利部食品药物管理署. 經重新評估,含rosiglitazone成分藥品未顯示會增加心血管風險,停止執行風險評估暨管控計畫. 卫生福利部食品药物管理署. 2016-12-30 [2020-05-04]. (原始内容存档于2021-01-05). 
  132. ^ Hanssen, Nordin Mj; Jandeleit-Dahm, Karin Am. Dipeptidyl peptidase-4 inhibitors and cardiovascular and renal disease in type 2 diabetes: What have we learned from the CARMELINA trial?. Diabetes & Vascular Disease Research. 2019-07, 16 (4): 303–309 [2021-11-26]. ISSN 1752-8984. PMC 6613297 . PMID 31018682. doi:10.1177/1479164119842339. (原始内容存档于2021-11-26). 
  133. ^ Wu, Shanshan; Chai, Sanbao; Yang, Jun; Cai, Ting; Xu, Yang; Yang, Zhirong; Zhang, Yuan; Ji, Linong; Sun, Feng. Gastrointestinal Adverse Events of Dipeptidyl Peptidase 4 Inhibitors in Type 2 Diabetes: A Systematic Review and Network Meta-analysis. Clinical Therapeutics. 2017-09, 39 (9): 1780–1789.e33 [2021-11-26]. ISSN 1879-114X. PMID 28827024. doi:10.1016/j.clinthera.2017.07.036. (原始内容存档于2021-11-26). 
  134. ^ Blech, Stefan; Ludwig-Schwellinger, Eva; Gräfe-Mody, Eva Ulrike; Withopf, Barbara; Wagner, Klaus. The Metabolism and Disposition of the Oral Dipeptidyl Peptidase-4 Inhibitor, Linagliptin, in Humans. Drug Metabolism and Disposition. 2010-01-19, 38 (4): 667–678. ISSN 0090-9556. doi:10.1124/dmd.109.031476. 
  135. ^ Gallwitz, Baptist; Rosenstock, Julio; Rauch, Thomas; Bhattacharya, Sudipta; Patel, Sanjay; von Eynatten, Maximilian; Dugi, Klaus A; Woerle, Hans-Juergen. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. The Lancet. 2012-08, 380 (9840): 475–483. ISSN 0140-6736. doi:10.1016/s0140-6736(12)60691-6. 
  136. ^ Shubrook, Jay; Baradar-Bokaie, Babak; Adkins, Sarah. Empagliflozin in the treatment of type 2 diabetes: evidence to date. Drug Design, Development and Therapy. 2015-10: 5793 [2021-01-26]. ISSN 1177-8881. doi:10.2147/DDDT.S69926. (原始内容存档于2021-01-05) (英语). 
  137. ^ Haas, B; Eckstein, N; Pfeifer, V; Mayer, P; Hass, M D S. Efficacy, safety and regulatory status of SGLT2 inhibitors: focus on canagliflozin. Nutrition & Diabetes. 2014-11, 4 (11): e143–e143 [2021-01-26]. ISSN 2044-4052. doi:10.1038/nutd.2014.40. (原始内容存档于2021-01-05) (英语). 
  138. ^ Pharmacologic Management of Type 2 Diabetes: 2016 Interim Update. Canadian Journal of Diabetes. 2016-06, 40 (3): 193–195. ISSN 1499-2671. doi:10.1016/j.jcjd.2016.02.006. 
  139. ^ Correction to: Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation. 2021-01-26, 143 (4). ISSN 0009-7322. doi:10.1161/cir.0000000000000954. 
  140. ^ Nauck, M.; Frid, A.; Hermansen, K.; Thomsen, A. B.; During, M.; Shah, N.; Tankova, T.; Mitha, I.; Matthews, D. R. Long-term efficacy and safety comparison of liraglutide, glimepiride and placebo, all in combination with metformin in type 2 diabetes: 2-year results from the LEAD-2 study. Diabetes, Obesity and Metabolism. 2012-10-11, 15 (3): 204–212. ISSN 1462-8902. doi:10.1111/dom.12012. 
  141. ^ Zelniker, Thomas A; Wiviott, Stephen D; Raz, Itamar; Im, Kyungah; Goodrich, Erica L; Bonaca, Marc P; Mosenzon, Ofri; Kato, Eri T; Cahn, Avivit. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet. 2019-01, 393 (10166): 31–39 [2021-03-19]. doi:10.1016/S0140-6736(18)32590-X. (原始内容存档于2020-10-07) (英语). 
  142. ^ Zannad, Faiez; Ferreira, João Pedro; Pocock, Stuart J.; Anker, Stefan D.; Butler, Javed; Filippatos, Gerasimos; Brueckmann, Martina; Ofstad, Anne Pernille; Pfarr, Egon. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. The Lancet. 2020-09-19, 396 (10254): 819–829. ISSN 0140-6736. PMID 32877652. doi:10.1016/S0140-6736(20)31824-9 (英语). 
  143. ^ Commissioner, Office of the. FDA approves new treatment for a type of heart failure. FDA. 2020-05-22 [2021-11-26]. (原始内容存档于2020-05-06) (英语). 
  144. ^ ASHP Practitioner Recognition Program—2016 Fellows of the American Society of Health-System Pharmacists. American Journal of Health-System Pharmacy. 2016-07-01, 73 (13): 1010–1010. ISSN 1079-2082. doi:10.2146/sp160001. 
  145. ^ Herman, William H. Response to Comment on Inzucchi et al. Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015;38:140–149. Diabetes Care. 2015-08-20, 38 (9): e143–e143. ISSN 0149-5992. doi:10.2337/dc15-1234. 
  146. ^ Brunström, Mattias; Carlberg, Bo. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. The BMJ. 2016-02-24, 352: i717. PMC 4770818 . PMID 26920333. doi:10.1136/bmj.i717. 
  147. ^ Swinnen, SG.; Simon, AC.; Holleman, F.; Hoekstra, JB.; Devries, JH. Simon, Airin CR , 编. Insulin detemir versus insulin glargine for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews. 2011,   (7): CD006383. PMID 21735405. doi:10.1002/14651858.CD006383.pub2. 
  148. ^ Waugh, N; Cummins, E; Royle, P; Clar, C; Marien, M; Richter, B; Philip, S. Newer agents for blood glucose control in type 2 diabetes: systematic review and economic evaluation. Health Technology Assessment (Winchester, England). July 2010, 14 (36): 1–248. PMID 20646668. doi:10.3310/hta14360. 
  149. ^ Pittas, Anastassios G.; Dawson-Hughes, Bess; Sheehan, Patricia; Ware, James H.; Knowler, William C.; Aroda, Vanita R.; Brodsky, Irwin; Ceglia, Lisa; Chadha, Chhavi. Vitamin D Supplementation and Prevention of Type 2 Diabetes. New England Journal of Medicine. 2019-08-08, 381 (6): 520–530 [2020-05-18]. ISSN 0028-4793. doi:10.1056/NEJMoa1900906. (原始内容存档于2021-01-05) (英语). 
  150. ^ Raedler, Lisa A. Glyxambi (Empagliflozin/Linagliptin): A Dual-Acting Oral Medication Approved for the Treatment of Patients with Type 2 Diabetes. American Health & Drug Benefits. 2015-3, 8 (Spec Feature): 171–175 [2021-03-19]. ISSN 1942-2962. PMC 4665058 . PMID 26629285. (原始内容存档于2022-04-23). 
  151. ^ Picot, J; Jones, J; Colquitt, JL; Gospodarevskaya, E; Loveman, E; Baxter, L; Clegg, AJ. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technology Assessment (Winchester, England). September 2009, 13 (41): iii–iv, 1–190, 215–357. PMID 19726018. doi:10.3310/hta13410. 
  152. ^ Frachetti, KJ; Goldfine, AB. Bariatric surgery for diabetes management. Current Opinion in Endocrinology, Diabetes and Obesity. April 2009, 16 (2): 119–24. PMID 19276974. doi:10.1097/MED.0b013e32832912e7. 
  153. ^ Schulman, AP; del Genio, F; Sinha, N; Rubino, F. "Metabolic" surgery for treatment of type 2 diabetes mellitus. Endocrine Practice. September–October 2009, 15 (6): 624–31. PMID 19625245. doi:10.4158/EP09170.RAR. 
  154. ^ Colucci, RA. Bariatric surgery in patients with type 2 diabetes: a viable option. Postgraduate Medicine. January 2011, 123 (1): 24–33. PMID 21293081. doi:10.3810/pgm.2011.01.2242. 
  155. ^ 155.0 155.1 Brito, Juan P.; Montori, Victor M.; Davis, Andrew M. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes. JAMA. 2017-02-14, 317 (6): 635–636 [2018-04-26]. ISSN 0098-7484. PMC 5557277 . PMID 28196240. doi:10.1001/jama.2016.20563. (原始内容存档于2022-04-24). 
  156. ^ 156.0 156.1 Rubino, Francesco; Nathan, David M.; Eckel, Robert H.; Schauer, Philip R.; Alberti, K. George M. M.; Zimmet, Paul Z.; Del Prato, Stefano; Ji, Linong; Sadikot, Shaukat M. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Surgery for Obesity and Related Diseases: Official Journal of the American Society for Bariatric Surgery. July 2016, 12 (6): 1144–1162 [2018-04-26]. ISSN 1878-7533. PMID 27568469. doi:10.1016/j.soard.2016.05.018. (原始内容存档于2020-05-18). 
  157. ^ 衛生福利部國民健康署 - 糖尿病. [2021-10-25]. (原始内容存档于2022-03-03). 
  158. ^ Abate N, Chandalia M. Ethnicity and type 2 diabetes: focus on Asian Indians. Journal of Diabetes and its Complications. 2001, 15 (6): 320–27. PMID 11711326. doi:10.1016/S1056-8727(01)00161-1. 
  159. ^ Carulli, L; Rondinella, S; Lombardini, S; Canedi, I; Loria, P; Carulli, N. Review article: diabetes, genetics and ethnicity. Alimentary Pharmacology & Therapeutics. November 2005,. 22 Suppl 2: 16–19. PMID 16225465. doi:10.1111/j.1365-2036.2005.02588.x. 
  160. ^ Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. May 2004, 27 (5): 1047–53. PMID 15111519. doi:10.2337/diacare.27.5.1047. 
  161. ^ 161.0 161.1 161.2 161.3 161.4 161.5 161.6 161.7 161.8 Zajac, Jacek; Shrestha, Anil; Patel, Parini; Poretsky, Leonid. The Main Events in the History of Diabetes Mellitus. Poretsky, Leonid (编). Principles of diabetes mellitus 2nd. New York: Springer. 2009: 316. ISBN 978-0-387-09840-1. OCLC 663097550. 
附注

外部链接

编辑